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NOMENCLATURE 

area of the heating surface; 
constant defined in equation (3 1); 
specific heat of the fluid at constant pressure; 
function defined in equations (10) and (13); 
dimensionless stream function ; 
function defined in equations (11) and (14); 
gravitational acceleration ; 
local heat transfer coefficient ; 
function defined in equations (10) and (13); 
latent heat of vaporization ; 
permeability of the porous medium; 
thermal conductivity of the porous medium; 
slant height of a wedge or a cone; 
a characteristic length ; 
evaporation rate at vapor-liquid interface; 
constant defined in equations (1)and (2); n = 0 for 
Zdim. bodies and n = 1 for axisymmetric bodies ; 
local Nusselt number; 
pressure ; 
local heat transfer rate; 
average heat transfer rate; 
property ratio of the vapor and the liquid phase, 

PL%(P, - PJC,, li2. 
wLp JLhfg 1 ’ 

radial distance from the axis to the surface of the 
axisymmetric bodies; 
Rayleigh number ; 
dimensionless degree of subcooling of liquid, 
C,,(T, - T,)/h,,; 
Sh = C,,(T, - T,)/h,,, dimensionless degree of 
wall superheating; 
temperature ; 
Darcy’s velocity, x-direction ; 
Darcy’s velocity, y-direction ; 
coordinate along the surface; 
coordinate perpendicular to the surface. 

Greek symbols 

i 
equivalent thermal dihusivity ; 
coefficient of thermal expansion ; 
boundary layer thickness ; 

99 similarity variable; 
0, dimensionless temperature; 
p* viscosity of the fluid ; 
P3 density of the fluid; 
rf), angle measured from the downwardvertical to the 

y-axis ; 
*, stream function ; 
x9 dimensionless distance in the x-direction. 

Subscripts 
s, saturated condition ; 
V, vapor phase ; 
L liquid phase ; 

z condition at infinity; 
w, condition at the wall. 

INTRODUCTION 

RECENT interest on the study of film boiling about heated 
isothermal bodies embedded in a permeable medium is 
motivated by its applications to geothermal energy util- 
ization. For buoyancy-induced flow about a superheated 
body where temperature and pressure are not increasing or 
decreasing simultaneously along a streamline, Parmentier [l] 
has shown that the transition from the subcooled liquid to 
superheated steam is abrupt such that a distinct interface 
exists between the superheated vapor zone adjacent to the 
heated surface and a liquid water zone away from the surface. 
The absence of a 2-phase region results in considerable 
mathematical simplifications which lead to similarity so- 
lutions for film boiling about a vertical flat plate and a vertical 
cylinder in a porous medium at high Rayleigh numbers [2-4]. 
In this paper, the approach adopted previously by Cheng and 
coworkers [2,3] is applied to the problem of film boiling 
about 2-dim. and axisymmetric isothermal bodies of arbit- 
rary shape in a subcooled permeable medium. With a 
generalized similarity transformation similar to those used by 
Merkin [S] for problems of free convection in porous media, 
it is shown that the resulting ordinary differential equations 
and boundary conditions for the present generalized problem 
reduce to those of film boiling about a vertical flat plate [2]. 
Applications to film boiling about a wedge, a cone, a 
horizontal cylinder, and a sphere embedded in a subcooled 
permeable medium are discussed. 

ANALYSIS 

Consider the problem of film boiling about 2dim. and 
axisymmetric bodies of arbitrary shape in a porous medium 
as shown in Fig. 1 where x is the coordinate measured along 
the heated surface from the lowest point, y is the coordinate 
perpendicular to the surface, and 4 = 4(x) is the angle 
between the coordinate y and the vertical direction. When the 
wall is maintained at a sunerheated temperature, it is assumed 
that a vapor film with thickness 6, will form adjacent to the 
heated surface. On the basis of the 2-phase. boundary layer 
theory, the governing equations for the porous medium filled 
with the superheated vapor at y <: S, are [2] 

-L=K(p,-p,)gsinf#~ 1 ati 
r” 8Y P” 

i a+, aq a+, aT, 
- ----- ( r” ay ax ax ay > 

a2T, 
=a,--7 ay (2) 

where the subscripts v and co denote quantities associated 
with the vapor phase and at infinity; n = 0 for 2-dim. bodies 
and n = 1 for axisymmetric bodies; r(x) is the radial distance 
from the axis to the surface of the axisymmetric bodies; 9 is 
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(0) n=O (b) n=l 

FIG. 1. Coordinate system for (a) a two-dimensional body and (b) an axisymmetric body. 

the gravitational acceleration ; p, and p” are the density and 
viscosity of the vapor phase; K is the intrinsic permeability of 
the porous medium; a, is the thermal diffusivity of the porous 
medium saturated with vapor; T” is the temperature of the 
vapor and the porous medium; and $” is the stream function 
of the vapor defined as 

1 a*” 

u’=T”ay 

and 

1 a*, 
“‘=-T”ax 

with u” and v” denoting the Dar&an velocities of the vapor in 
the x and y directions. The governing equations for the liquid 
phase at y > 6” are [2] 

1 wL KP& _ -= ~ (TL - T,) sin 4 
Fay k. 

1 - ----- 
( 

akk aT, atk aTt. 

> 

a*T, 

fl ay ax ax ay 
= aLz 

ay 

(3) 

(4) 

where the subscript L denotes the quantities associated with 
the liquid phase; /? is the thermal expansion coefficient of the 
liquid phase; and $,_ is the stream function of the liquid phase 
defined as 

and 

1 ati, 

UL==G 

1 a*, 
aL=-,n,,, 

The boundary conditions at the wall and at infinity are 

yco: a+” 
ax = O” Tv = Tw 

Pa, b) 

and 
y+r:s=O, TL=T, 

ay 
(6a. b) 

At the vapor-liquid interface (y = a”), the continuity of 
temperature, mass flow and energy flux give [2] 

TV = T, = TL (7) 

(9) 
y=6, 

(8) 

where km*, and k, ,_ are the equivalent thermal conductivities 
of the porous medium filled with the vapor and the liquid 
phases respectively ; nia is the evaporation rate and h,, is the 
latent heat of vaporization of the liquid phase at the 
saturation temperature T,. 

We now introduce the following similarity transformations 
for the vapor phase : 

and for the liquid phase 

(14) 

(15) 

where Ra, = K(p, - pvWwv and R%. = KP,BB(T, - 
T,)l/p,a, are the Rayleigh numbers of the vapor and the 
liquid phases with I denoting a characteristic length ; Hh) = 
sin 44x). D(x) = +4/l, and 

11 

x 

I 

I /2 

‘3x) = o*“(t)H(t)dt 
0 

where x = x/l. Substituting equations (lo)-(15) into equa- 
tions (l)-(9) yields the following ordinary differential 
equations : 

f: = 1 (lo) 

e: + ff",e" =o (17) 

and 

fl = or (18) 

e; + if,& = 0 (19) 

subject to the boundary conditions 

f,(O) = e”(0) - 1 = 0 (2Oa, b) 

fl(cr;) = &(a) = 0 (21a, b) 

and the interface conditions 

e”(tt”,) = 0, e,(O) = 1 (22a, b) 

fL(O) = ~lt"‘Aw2 (23) 

SF 
Sh = FWL(O) - F 

I 
/0&J (24) 
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where tlYa = Ra,‘i2Svf~, 

R = pv PL%(P, - P.)c,, I’* 

Pm [ &%P mhrrS I ’ 

SC = c,,(T, - T-)/b,, and Sh = c,,(T, - T,)/h,, with cpv = 
k,,&*a~ and cpL = k,,Jp,a, denoting the specific heats of 
the porous medium that filled with the vapor and liquid 
phases respectively. Equations (16)-(19) with boundary con- 
ditions (20~(24) have been integrated numerically by Cheng 
and Verma [Z]. 

RESULTS AND DISCUSSION 

In terms of the transformed variables, the Darcian velo- 
cities in the vapor and the liquid phases are 

(x cos ap* ,x0 = I = L, and A = 2L. Consequently, the local 
Nusselt number and the average Nusselt number are 

NuX/Rat’z = - 0:(O), 

Nu ,JRa,‘f = 2[ - K(O)] (32a, b) 

where Nu, = &/k,,,(T, - T,), Ra, X = K(p, - p.) 
g cos ax/p,a, and Ra,,, = K(p, - p&g cos aL/p,a, are 
the Rayleigh numbers based on the component of the 
gravitational force parallel to the inclined surface. 

(ii) Cone with halfan& a and a slant height L. For this case, 
wehaven= l,#=n/2 -a,x,=l=L,D(~)=~sina,H(X) 
= cos a, GQ) = x sin ah cos a/3]“* and A = nL2 sin a. 
Consequently 

NudRa,‘ji = J3[ -e:(o)] = 1.73[ -e:(o)] 

Nu,/Rat,‘i = (4/J3) [ - e:(O)] = 2.30[ -e:(O)] 
(33% b) 

WP, - PJg Y F’WW where Ra “.I and Ra, are defined as in Case (i). Note that Cases 
u, = - 

& 0 -= I 
(i) and (ii) have been considered in refs. [2,4]. 

(iii) Horizontal cylinder with radius rO. For this case, we 

-[ 

Ka,@, - p,)g 1 “‘D”CX)H(X) have n = 0, I = r,,, 4 = x/r0 = 1, Hk) = sin 1, Gk) = (1 - 

I4 
GCX) (‘k/2) (26) cos xP2. x,, = nr,,, x0 = x and A = 2nr,. Consequently, 

and 
sin (x/rO) 

Kp&(T, - T,) 

Nud(Rai!i) = (x/r#* [l _ cos (x,r0)]1,2 [-fW)l~ Pa) 

UL = MdHti) (27) 
111 

Nud(Ra,‘j,) = (4/n) [-q(O)] = 1.27[ - K(O)] (34b) 
I 

where Nu, = gd/k,,,,(T, - T,) and Ra,,d = K(p, - 

VL = - 
Kp,/MT, - Tm) Y F’WW o (q 0 , p,)gd/p,a, with d = 2r, denoting the diameter of the cylinder. 

PL _D”oL L 1 (iv) Sphere with radius r,,. For this case, we haven = 1, I = 

%p,Bg(T, - T,) 

-[ I(Ll 1 
I” DD(x)zHG(zI:L(tll) 

rO, 4 = x/r0 = x, D(x) = sin x, H(X) = sin x, Gk) = 
(28) [cos3 x/3 - cosx + 2/3]“‘, x0 = nr,,, x0 = 1~ and A = 4nrg. 

Consequently, 

where F(X) = D”(y)H(X)/G(X) and F’k) = dF/dX. 
The local surface heat flux is given by Nu 

ti = (xlr0)“’ 
“.X 

(354 

= Ill.” k 
x p’X)H!$v, - TJ [-e:(O)] 

1 
(29) 

Nut, 
- = 2(2/3)“‘[ - 0:(O)] = 1.63[ - e:(O)] 
Rai,‘j 

(35b) 

_.. 

where the values of -0\(O) as a function of Sh, SC and R are 
where Nu, and Ra,,, are defined in Case (iii). Note that in 

given by Cheng and Verma [2]. Equation (29) can be 
equations (34b) and (35b), it has been assumed that film 

rewritten in dimensionless form as boiling also exist at the top of the horizontal cylinder and the 
sphere. 

Nu,= 
Rat,! ’ 

(30) 

where Nu, = &,x/k&T, - T,) and R% = K@, - 
p,)gx/p,q are the local Nusselt number and the local 
Rayleigh number of the vapor respectively. The average 
surface heat flux is given by 
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