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NOMENCLATURE

area of the heating surface;

constant defined in equation (31);

specific heat of the fluid at constant pressure;
function defined in equations (10) and (13);
dimensionless stream function ;

function defined in equations (11) and (14);
gravitational acceleration;

local heat transfer coefficient;

function defined in equations (10) and (13);
latent heat of vaporization;

permeability of the porous medium;

thermal conductivity of the porous medium;
slant height of a wedge or a cone;

a characteristic length;

evaporation rate at vapor-liquid interface;
constant defined in equations (1)and (2); n = Ofor
2-dim. bodies and n = 1 for axisymmetric bodies;
local Nusselt number;

pressure;

local heat transfer rate;

average heat transfer rate;

property ratio of the vapor and the liquid phase,

[& oy, — Pv)CpL]m,
oL p xBthg ’

radial distance from the axis to the surface of the
axisymmetric bodies;

Rayleigh number ;

dimensionless degree of subcooling of liquid,
CoulTy — T,o)fhegs

Sh = C, (T, — T,)/hy, dimensionless degree of
wall superheating;

temperature ;

Darcy’s velocity, x-direction ;

Darcy’s velocity, y-direction;

coordinate along the surface;

coordinate perpendicular to the surface.

o

Greek symbols

a,
B,
3,
1,
o,
H,
ps
¢,

¥,
%

Subscripts
s,
v,
L,

equivalent thermal diffusivity;

coefficient of thermal expansion;
boundary layer thickness;

similarity variable;

dimensionless temperature;

viscosity of the fluid;

density of the fluid;

angle measured from the downward vertical to the
y-axis;

stream function ;

dimensionless distance in the x-direction.

saturated condition ;
vapor phase;
liquid phase;
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s condition at infinity;
W, condition at the wall.

INTRODUCTION

RECENT interest on the study of film boiling about heated
isothermal bodies embedded in a permeable medium is
motivated by its applications to geothermal energy util-
ization. For buoyancy-induced flow about a superheated
body where temperature and pressure are not increasing or
decreasing simultaneously along a streamline, Parmentier [1]
has shown that the transition from the subcooled liquid to
superheated steam is abrupt such that a distinct interface
exists between the superheated vapor zone adjacent to the
heated surface and a liquid water zone away from the surface.
The absence of a 2-phase region results in considerable
mathematical simplifications which lead to similarity so-
lutions for film boiling about a vertical flat plate and a vertical
cylinder in a porous medium at high Rayleigh numbers [2—4].
In this paper, the approach adopted previously by Cheng and
coworkers [2,3] is applied to the problem of film boiling
about 2-dim. and axisymmetric isothermal bodies of arbit-
rary shape in a subcooled permeable medium. With a
generalized similarity transformation similar to those used by
Merkin [5] for problems of free convection in porous media,
it is shown that the resulting ordinary differential equations
and boundary conditions for the present generalized problem
reduce to those of film boiling about a vertical flat plate [2].
Applications to film boiling about a wedge, a cone, a
horizontal cylinder, and a sphere embedded in a subcooled
permeable medium are discussed.

ANALYSIS

Consider the problem of film boiling about 2-dim. and
axisymmetric bodies of arbitrary shape in a porous medium
as shown in Fig. 1 where x is the coordinate measured along
the heated surface from the lowest point, y is the coordinate
perpendicular to the surface, and ¢ = ¢(x) is the angle
between the coordinate y and the vertical direction. When the
wallis maintained at a superheated temperature, it is assumed
that a vapor film with thickness §, will form adjacent to the
heated surface. On the basis of the 2-phase boundary layer
theory, the governing equations for the porous medium filled
with the superheated vapor at y < 8, are [2]

16y, K ,

v — 1

oy m (P —p)gsin ¢ (8]
L (3%, 9T, oy, 3T\ T, o
r\dy ax ox ay/) oy

where the subscripts v and oo denote quantities associated
with the vapor phase and at infinity ; n = 0 for 2-dim. bodies
and n = 1 for axisymmetric bodies; r(x) is the radial distance
from the axis to the surface of the axisymmetric bodies; g is
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F1G. 1. Coordinate system for (a) a two-dimensional body and (b) an axisymmetric body.

the gravitational acceleration; p, and u, are the density and
viscosity of the vapor phase; K is the intrinsic permeability of
the porous medium ; , is the thermal diffusivity of the porous
medium saturated with vapor; 7, is the temperature of the
vapor and the porous medium; and ¥, is the stream function
of the vapor defined as

_ ooy,
e dy
and
1 oy,
b= r ox

with u, and v, denoting the Darcian velocities of the vapor in
the x and y directions. The governing equations for the liquid
phase at y > 3, are [2]

1 oy, Kp.Bg )

— == (T, ~T 3

7 3y " (T, - T,)sing 3)
Loy, oT, oy, 0T, T,
(T T ) — @)
"\ dy 0x ox dy dy

where the subscript L denotes the quantities associated with
the liquid phase; f is the thermal expansion coefficient of the
liquid phase ; and i, is the stream function of the liquid phase
defined as

1 oy
w5 Ty
and
1 oy,
ST e

The boundary conditions at the wall and at infinity are

F
yoo: Yo T-1, (a,b)
Ox
and
d
y—»oc:-aﬂ=o, T.=T, (6a,b)

At the vapor-liquid interface (y = 4,), the continuity of
temperature, mass flow and energy flux give [2]

T,=T,=T, )

. =p_v[awvd_<x+awv
mLdy dx  ox |,

]
_A [0 gs ey,
7 [7; a t A |, @)

aT, 6T,_>
—k,,, =ty — ko y [t 9
. (ay )}-=5v dhfg L ay =5, ( )

where k,, , and k, | are the equivalent thermal conductivities
of the porous medium filled with the vapor and the liquid
phases respectively ; m, is the evaporation rate and h;, is the
latent heat of vaporization of the liquid phase at the
saturation temperature T,

We now introduce the following similarity transformations
for the vapor phase:

o (YYHWD () 10
r’v - Rav (l) G(x) ( )
¥, = o, Ra,* GRS )" (11)
b = 2 (12)
W) = T..T
and for the liquid phase

(Y 5V>H(xw"(x>
n. = Ray ( ] G (13)
Yo = a, Ral *G) A" (14)
Bin) == T (15
L) = T.—T, )

where Ra, = K(p,, — p,)gl/n0, and Ra, = Kp . gB(T, —
T /u oy are the Rayleigh numbers of the vapor and the
liquid phases with ! denoting a characteristic length; H(y) =
sin ¢(x), D(x) = r(x)/l, and

X 1/2
G(x) = U D*™OH (t)dt]

0
where y = x/l. Substituting equations (10)-(15) into equa-
tions (1)-(9) yields the following ordinary differential
equations:

fo=1 (16)
0 +3/6,=0 an
and
fi=6 (18)
0] + 346 =0 (19)
subject to the boundary conditions
fMO)=6,0—-1=0 (20a,b)
filec) =0 (xc)=0 (21a,b)
and the interface conditions
0.(n.5) =0, 8.(0)=1 (22a,b)
fu(0) = Rn,y/(Sc)' 23

sh=[3" g0 = ™ Lo 2%
—[ R L0 )_’i‘:l/ V(M) (24)
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where n,; = Ral’$ /x,

R= &["‘Lav(pm - pv)CpL:ll/z
Po ’

PP o hf gﬁ

Sc = ¢o(T, — T, )/hgand Sh = ¢, (T, — T,)/h, withc,,

ke /pya, and cy = ke 1 /pp0y, denotmg the specific heats of
the porous mcdlum that filled with the vapor and liquid
phases respectively. Equations (16)~(19) with boundary con-
ditions (20)—(24) have been integrated numerically by Cheng
and Verma [2].

RESULTS AND DISCUSSION

In terms of the transformed variables, the Darcian velo-
cities in the vapor and the liquid phases are

u, = [K(pao”_ pv)g}H(x)

_Kpo -2 <X>F (WG
My 1) D'y
_ [Kav(pw - pv)g]”’ D"(x)H(x)
ul G(x)

25)

v, =

(n/2) (26)

and

K T,-T
u = K0P T g
Mo
Kp Bg(T, - T,) (y\F (0G6k)
" 1) D
_ [Kammﬁg(T, - Tw)]”’ DG H ()Aln)
ml 26(x)
where F(x) = D"(x)H(x)/G(x) and F'(y) = dF/dy.
The local surface heat flux is given by

- (2)
q = —
ay y=0

Ra;? D(HX(T, - T)) .
= km.v : [_BV(O)]
l G(x)
where the values of —#8,(0) as a function of Sh, Sc and R are
given by Cheng and Verma [2]. Equation (29) can be
rewritten in dimensionless form as

Nu, D
B (x)[ o100]

where Nux = qwx/km.v(Tw - Ts) and Rav,x = K(Pm -
p)gx/u,o, are the local Nusselt number and the local
Rayleigh number of the vapor respectively. The average
surface heat flux is given by

@7

Oi(m)

L=~

(28)

(29)

(30)

g=(/4) J 0 [rr(x)'qu(x)dx

= (2r/A)ky,,, Ray*C(T, — T)[ -6, (0)]

where A is the area of the heating surface and

L [ D"wHG
C=n f 6w X

where x, = x,/! with x, denoting the total length of the
surface in the x-direction.

We shall now obtain the explicit expressions for G(x), H(x),
D(x) and for the local and average Nusselt numbers for the
special cases detailed below.

(1) Wedge with half angle « and a slant height L. For this
case, we have n = 0, ¢ = n/2 — a, H(y) = cosa, G(x) =
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(xcosa)!?,x, = | = L,and A = 2L. Consequently, the local
Nusselt number and the average Nusselt number are

Nu,/Ra}?? = — 8,(0),
Nug/Rallt = 2[ - 6(0)] (32a, b)

where Nu;, = qL/km.v(Tw - T,) Rav,x = K(p, — p.)
g cos ax/ux, and Ra,; = K(p, —~ p,g cos aL/u,a, are
the Rayleigh numbers based on the component of the
gravitational force parallel to the inclined surface.

(i) Cone with half angle o and a slant height L. For this case,
wehaven =1,¢ = n/2 — a,xg = | = L,D(y) = ysina, H(y)
= cos o, G(x) = x sin afy cos ¢/3]'? and A = nL? sin «.
Consequently

Nu/Ral? = J3[-6,(0)] = 1.73[ - 6,(0)]

Nuy/Ra}} ={4/,/3)[-6,(0)] = 2.30[ - 6,(0)]
(33a,b)

where Ra, , and Ra, are defined as in Case (i). Note that Cases
(i) and (i) have been considered in refs. [2, 4].

(iii) Horizontal cylinder with radius r,. For this case, we
haven = 0,1 = ro, ¢ = x/ro = x, H(x) = sinx, G(y) = (1 —
cosy)'2, xo = mry, o = mand A4 = 2nr,. Consequently,

sin (x/rg)
[1 — cos(x/ro)]'?

Nuy/(Ra,}) = (4/m)[-6,(0)] = 1.27[ - 6,(0)] (34b)

where Nu, = gdjk, (T, T,) and Ra,, = K(p, —
p,)gd/ua, with d = 2r, denoting the diameter of the cylinder.

(iv) Sphere with radius r,. For this case, we haven = 1,/ =
To, ¢ = x/"o = X D(X) = Sin X H(X) = Sin X G(X) =
[cos® x/3 — cosx + 2/3]'72,x, = nrg, xo = mand A = dmrl.
Consequently,

Nu/(Ra}?) = (x/ro)' [-6.0)], (34a)

Nu sin? (x/ry)

—= = (x/"o)”2 1/2[_93(0)]
Ra}} [cos ;x/ 7o) _ cos (x/ro) + 2/3]
(35a)
Nu,
Rall = 22/3)'*[ - 0(0)] = 1.63[ - 6,(0)] (35b)

where Nu, and Ra, , are defined in Case (iii). Note that in
equations (34b) and (35b), it has been assumed that film
boiling also exist at the top of the horizontal cylinder and the
sphere.
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